Total Synthesis of Taxol. 2. Construction of A and C Ring Intermediates and Initial Attempts To Construct the ABC Ring System

K. C. Nicolaou,* J.-J. Liu, Z. Yang, H. Ueno, E. J. Sorensen, C. F. Claiborne, R. K. Guy, C.-K. Hwang, M. Nakada, and P. G. Nantermet
Contribution from the Department of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California 92037, and Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093

Received July 7, 1994*

Abstract

A method for the formation of Taxol's ABC ring system has been developed. General methods for the synthesis of versatile synthons for Taxol's A ring (8) and C ring (55) are presented. A model study using a simplified C ring synthon (17) confirmed the viability of the sequential Shapiro-McMurry strategy for formation of Taxol's B ring. Careful exploration of the chemistry of various A-B ring conjugates allowed the development of a successful method for formation of the B ring in a more functionalized system.

Introduction

The preceding paper ${ }^{1}$ established a convergent strategy toward Taxol (1, Figure 1) and described a number of chemical studies that provided direction toward the appropriate intermediates and final path. In this article we describe the construction of rings A and C and discuss the refinements to these methods that were necessary to arrive at the key building blocks that were utilized in the synthesis.

Construction of Ring A

In keeping with the themes of convergency and of using the Diels-Alder reaction as a means to construct both rings A and C of Taxol (1), we embarked on the synthesis of intermediates 9 and 10 as summarized in Scheme 1. The possibility of steric hindrance overriding the well-known electronic induction of regiocontrol in the Diels-Alder reaction ${ }^{2}$ warranted concern initially. This worry proved unfounded, however, as the readily prepared diene $5^{3,4}$ and 1-chloroacrylonitrile (6) provided, through a Diels-Alder reaction that proceeded smoothly at 130 ${ }^{\circ} \mathrm{C}$ in a sealed tube, an 80% yield of desired product 7 as a single regioisomer, whose structure was confirmed by both spectroscopic and X-ray crystallographic analyses. Application of the protocol of Shiner ${ }^{5}$ ($\mathrm{KOH},{ }^{\mathrm{t}} \mathrm{BuOH}, 70^{\circ} \mathrm{C}$) freed the latent carbonyl group at C 1 with concomitant acetate removal to give hydroxy ketone 8 (90%, based on 70% conversion). Reprotection of the primary hydroxyl group of 8 as either a

[^0]

1:Taxol
Figure 1. Structure and numbering of Taxol (1).
Scheme 1. Construction of Ring A Key Intermediates 8-10 ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) 1.2 equiv of $\mathrm{MeMgBr}, \mathrm{Et}_{2} \mathrm{O}, 0 \rightarrow 25^{\circ} \mathrm{C}$, 8 h , then 0.2 equiv of p-TsOH, benzene, $65^{\circ} \mathrm{C}, 3 \mathrm{~h}, 70 \%$; (b) 2.2 equiv of $i-\mathrm{Bu}_{2} \mathrm{AIH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 92 \%$; (c) 1.1 equiv of $\mathrm{Ac}_{2} \mathrm{O}, 1.2$ equiv of $\mathrm{Et}_{3} \mathrm{~N}, 0.2$ equiv of 4-(dimethylamino)pyridine (DMAP), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0 \rightarrow 25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 96 \%$; (d) 1.0 equiv of $5,1.5$ equiv of $6,130^{\circ} \mathrm{C}, 72 \mathrm{~h}$, 80%; (e) 6.0 equiv of KOH, t-BuOH, $70^{\circ} \mathrm{C}, 4 \mathrm{~h}, 90 \%$ based on 70% conversion; (f) for $9,1.1$ equiv of TBSCl, 1.2 equiv of imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 85 \%$; for $10,1.2$ equiv of $\mathrm{MEMCl}, 1.3$ equiv of $i-\mathrm{Pr}_{2} \mathrm{NEt}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 95 \%$. TBS $=$ Si-t-BuMe $2, \mathrm{MEM}=$ (methoxyethoxy)methyl.
tert-butyldimethylsilyl ${ }^{8}$ or (methoxyethoxy)methyl ${ }^{7}$ ether afforded compounds 9 (85% yield) and 10 (95% yield), respectively.
(7) Jacobson, R. M.; Clader, J. W. Synth. Commun. 1979, 9, 57.
(8) Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.

Scheme 2. Chemistry of A Ring Ketones 8-10 and Construction of Hydrazones 15 and $\mathbf{1 6}^{a}$

8
11

14
13

${ }^{a}$ Reagents and conditions: (a) 1.1 equiv of $\mathrm{KH}, 1.05$ equiv of $\mathrm{PhCH}_{2} \mathrm{Br}$, THF, $0 \rightarrow 25^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 37 \%$; (b) 1.1 equiv of $\mathrm{LiN}-i-\mathrm{Pr}_{2}, \mathrm{DME},-78^{\circ} \mathrm{C}$, 2 h , then 1.07 equiv of N-phenyltrifluoromethanesulfonimide, DME, -78 $\rightarrow 0{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 80 \%$; (c) 0.90 equiv of $\mathrm{Me}_{3} \mathrm{SnSnMe}_{3}, 6.35$ equiv of LiCl , 0.02 equiv of $\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Pd}, \mathrm{THF}, 60^{\circ} \mathrm{C}, 18 \mathrm{~h}, 90 \%$; (d) 1.0 equiv of PhCOCl , 0.05 equiv of $\mathrm{PhCH}_{2} \mathrm{Pd}(\mathrm{Cl})\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}, \mathrm{HMPA}, 65^{\circ} \mathrm{C}, 18 \mathrm{~h}, 65 \%$; (e) for 15 , 1.0 equiv of (2,4,6-triisopropylbenzenesulfonyl)hydrazine, THF, $25^{\circ} \mathrm{C}, 24$ h, 88%; for 16, 1.0 equiv of ($2,4,6$-triisopropylbenzenesulfonyl)hydrazine, $\mathrm{MeOH} 25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 85 \%$. Ar $=2,4,6$-triisopropylbenzene, $\mathrm{TBS}=$ Si-t$\mathrm{BuMe}_{2}, \mathrm{MEM}=$ (methoxyethoxy)methyl, HMPA $=$ hexamethylphosphoramide.

Early attempts to engage ketones 9 or 10 in coupling with nucleophiles revealed their reluctance to enter in such reactions, probably due to both steric hindrance and ease of enolization. The reaction of 8 with benzyl bromide under basic conditions evidenced the latter by giving rise to dibenzyl derivative 11 (37%, Scheme 2), rather than the expected benzyl ether.

Having failed to induce the ring A derivatives 8-10 to undergo nucleophilic additions at their carbonyl site, it was then decided to umpolung the system, that is to convert it into a nucleophilic species. Early attempts utilized the vinyltin derivative 13 (Scheme 2), prepared from ketone 10 via triflate 12^{9} as summarized in Scheme 2, as a vinyllithium precursor or a nucleophillic partner in a Stille coupling ${ }^{10}$ reaction. However, neither reaction proved fruitful with a functionalized ring C partner, even though a Stille coupling of 13 with benzoyl chloride did afford enone 14 (65% yield, Scheme 2). With some reluctance due to the expected steric hindrance, the formation

[^1]of a hydrazone, a precursor to vinyllithium species, was then attempted. To our surprise and delight, hydrazones 15 and 16 were both easily prepared from the corresponding ketones 9 and $\mathbf{1 0}$ via addition of (triisopropylsulfonyl)hydrazine. ${ }^{11}$ As will be discussed below, these hydrazones served admirably in Shapiro couplings ${ }^{12,13}$ with appropriately functionalized ring C partners.

A Feasibility Study for the Shapiro-McMurry Strategy

With a suitable ring A vinyllithium precursor in hand, we were now ready to test the feasibility for the proposed ShapiroMcMurry strategy toward the taxoid skeleton. To this end the model aldehyde $21,{ }^{14}$ representing Taxol's ring C, was prepared from diester $\mathbf{1 7}^{15}$ via the sequence summarized in Scheme 3. Then, reaction of hydrazone 16 with 2.1 equiv of $n-\mathrm{BuLi}$ in THF at $-78^{\circ} \mathrm{C}$ followed by warming to $0^{\circ} \mathrm{C}$ and addition of aldehyde 21 furnished a mixture of diastereomeric C2 alcohols (ca. 2:1) in 83% total yield. The major diastereoisomer, isolated chromatographically, was proven to be of the desired stereochemistry, as indicated in structure 22, by X-ray crystallographic analysis on a subsequent intermediate (vide infra). Vanadiumcatalyzed epoxidation of allylic alcohol 22 according to the Sharpless procedure ${ }^{16}$ proceeded regio- and stereoselectively to afford epoxide 23 in 91% yield. Regioselective opening of this epoxide using lithium aluminum hydride ${ }^{17}$ in $\mathrm{Et}_{2} \mathrm{O}$ at $0-25^{\circ} \mathrm{C}$ provided diol 24 in 96% yield. Following our tactical intention to preorganize the substrate prior to McMurry reactions, ${ }^{18}$ we engaged the vicinal 1,2 -diol system in 24 as the acetonide $25 .{ }^{19}$ Sequential removal of the primary alcohols' protecting groups and oxidation ${ }^{20}$ with TPAP-NMO furnished dialdehyde 30 in 50% overall yield from $\mathbf{2 5}$ (Scheme 4). An X-ray crystallographic analysis of compound $\mathbf{3 0}$ confirmed its structure and those of its precursors (see ORTEP drawing, Figure 2).

Having secured dialdehyde 30 we were within sight of a tricyclic taxoid skeleton provided the pending McMurry coupling ${ }^{18}$ would be successful. Mindful of Kende's precedent ${ }^{21}$ which resulted in the formation of an olefin at the C9-C10 site instead of the C9-C10 diol system that we desired, we proceeded cautiously and systematically to develop proper conditions for this ring closure. After considerable experimentation it was found that exposure of dialdehyde 30 to $\mathrm{Ti}(0)$ generated from TiCl_{3} and $\mathrm{Zn}-\mathrm{Cu}$ couple in DME at $50^{\circ} \mathrm{C}$ under high-dilution conditions gave the desired diol 31 in 40% yield

[^2]Scheme 3. Synthesis of the Acetonide Model System 25 by the Shapiro Reaction ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) 5.0 equiv of i - $\mathrm{Bu}_{2} \mathrm{AlH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow$ $25^{\circ} \mathrm{C}, 10 \mathrm{~h}, 95 \%$; (b) $\mathrm{H}_{2}, 0.2$ equiv of $\mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc}, 3 \mathrm{~h}, 100 \%$; (c) 1.0 equiv of $\mathrm{KH}, 1.0$ equiv of $\mathrm{PhCH}_{2} \mathrm{Br}, \mathrm{THF}, 0 \rightarrow 25^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 85 \%$; (d) 2.0 equiv of pyridinium dichromate (PDC), molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 25$ ${ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 90 \%$; (e) 16 , 2.1 equiv of n - $\mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$, then $0^{\circ} \mathrm{C}$, $10 \mathrm{~min}, 1.3$ equiv of $21, \mathrm{THF}, 0 \rightarrow 25^{\circ} \mathrm{C}, 5 \mathrm{~h}, 83 \%$ (ca. $2: 1$ diastereomeric mixture); (f) 1.1 equiv of t - $\mathrm{BuOOH}, 0.014$ equiv of $\mathrm{VO}(\mathrm{acac})_{2}, \mathrm{PhH}, 25$ ${ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 91 \%$; (g) 2.0 equiv of $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 20 \mathrm{~min}, 25^{\circ} \mathrm{C}, 6 \mathrm{~h}$, 96%; (h) 2 equiv of 2,2-dimethoxypropane, 0.2 equiv of camphorsulfonic acid (CSA), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 85 \%$. MEM $=$ (methoxyethoxy)ethyl, $\mathrm{Bn}=\mathrm{CH}_{2} \mathrm{Ph}$, acac $=$ acetylacetonate.
as a mixture of two diastereoisomers (stereochemistry unassigned). This reaction produced no $\Delta \mathrm{C} 9-\mathrm{C} 10$ olefin, although the C $9-\mathrm{C} 12$ coupled byproduct 32 was formed (25% yield) as also observed by Kende. ${ }^{21}$ The mechanistic aspects of this reaction will be discussed in a subsequent paper in this series. Oxidation of the mixture of diols 31 with $\mathrm{MnO}_{2}{ }^{22}$ gave the dienediol 33 in 90% yield, and acetylation of 31 followed by PCC oxidation ${ }^{23}$ led to enone 35 via diacetate 34 . The work presented in Schemes 3 and 4 demonstrated the viability of our Shapiro-McMurry strategy toward Taxol (1) and placed us in the position of facing the challenge of Taxol (1) itself.

Construction of C Ring Systems

a. The Diels-Alder Reaction. In contrast to the achiral ring A system, ring C of Taxol, with its numerous stereocenters

[^3]Scheme 4. Synthesis of the ABC Taxoid Systems 33 and 35 by the McMurry Reaction ${ }^{\text {a }}$

${ }^{a}$ Reagents and conditions: (a) $\mathrm{H}_{2}, 20 \% \mathrm{Pd}(\mathrm{OH})_{2}$ on C, EtOH, $25^{\circ} \mathrm{C}, 2$ $\mathrm{h}, 100 \%$; (b) 1.2 equiv of $\mathrm{Ac}_{2} \mathrm{O}, 1.3$ equiv of 4 -(dimethylamino)pyridine (DMAP), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0 \rightarrow 25^{\circ} \mathrm{C}, 2.5 \mathrm{~h}, 97 \%$; (c) 1.0 equiv of $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}$, then $-20^{\circ} \mathrm{C}, 10 \mathrm{~min}, 65 \%$; (d) 0.1 equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{MeOH}, 25{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}, 91 \%$; (e) 0.05 equiv of tetrapropylammonium perruthenate (TPAP), 3.0 equiv of 4 -methylmorpholine N-oxide (NMO), 4 -Å sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 10 \mathrm{~min}, 87 \%$; (f) 8.0 equiv of $\mathrm{TiCl}_{3}-(\mathrm{DME})_{1.5}$, 15 equiv of $\mathrm{Zn}-\mathrm{Cu}, \mathrm{DME}, 5{ }^{\circ} \mathrm{C}, 5 \mathrm{~h}, 40 \%$ of $\mathbf{3 1}, 25 \%$ of 32 ; (g) excess $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 20 \mathrm{~min}, 90 \%$; (h) excess $\mathrm{Ac}_{2} \mathrm{O}$, excess pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 98 \%$; (i) 30 equiv of pyridinium chlorochromate (PCC), 30 equiv of NaOAc, Celite, benzene reflux, $2 \mathrm{~h}, 71 \%$. MEM $=$ (methoxyethoxy)ethyl.
and high degree of oxygenation, presented a more serious challenge to the Diels-Alder approach. Early approaches examined the reaction of dienophile 40 (prepared from 1-hy-droxy-2-propene (36) according to Scheme 5) and 3-car-bomethoxy-2-pyrone (43) (Scheme 6). According to previous work by Corey ${ }^{24}$ and Bryson ${ }^{25}$ with the latter compound, and considering the substitution pattern of dienophile 40 , we expected this reaction to proceed regio- and stereoselectively to afford product 45 via intermediate 44 . Diene 45 was then expected to serve as a precursor to a fully functionalized ring C for coupling with ring A. In the event, however, this DielsAlder reaction ($155{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}, 81 \%$ yield based on 51% conversion) proceeded with the opposite regiochemistry from that expected, furnishing product 47, via presumed intermediate 46, the latter undergoing a facile decarboxylation under the reaction conditions. A series of regio- and stereochemically controlled reactions, as shown in Scheme 6, converted cyclohexadiene system 47 into crystalline diol 51 . X-ray crystallographic analysis of 51 (see ORTEP drawing, Figure 2)

[^4]

30

51

60

103

Figure 2. ORTEP drawings for intermediates 7, 30, 51, 60, 87, 103.

Scheme 5. Synthesis of Dienophiles 40-42a

40: $R=$ TPS
41: $R=T H P \quad{ }^{\prime} \quad$ d $R=H$
${ }^{a}$ Reagents and conditions: (a) 1.1 equiv of $\mathrm{TPSCl}, 1.15$ equiv of imidazole, DMF, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then 2.2 equiv of $\mathrm{Ph}_{3} \mathrm{P},-78^{\circ} \mathrm{C} \rightarrow 25^{\circ} \mathrm{C}$; (b) 2.1 equiv of dihydropyran, 0.005 equiv of p-TsOH, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$, then $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 5 \mathrm{~h}$, then 1.0 equiv of $\mathrm{Ph}_{3} \mathrm{P},-78{ }^{\circ} \mathrm{C} \rightarrow 25{ }^{\circ} \mathrm{C}, 98 \%$; (c) for 40 , 1.4 equiv of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2} \mathrm{Et}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 20 \mathrm{~h}, 91 \%$ from 36 ; for $41,1.03$ equiv of $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 4 \mathrm{~h}$, then $25^{\circ} \mathrm{C}, 18 \mathrm{~h}, 90 \%$; (d) 0.05 equiv of p-TsOH, $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 18 \mathrm{~h}, 92 \%$. TPS $=\mathrm{Si}-t-\mathrm{BuPh}_{2}, \mathrm{THP}=$ tetrahydropyranyl.

Scheme 6. Early Diels-Alder Attempts ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) 1.0 equiv of $40,2.0$ equiv of 43 , neat, $155^{\circ} \mathrm{C}, 24 \mathrm{~h}, 81 \%$ based on 51% conversion; (b) 4.0 equiv of m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 71 \%$ plus 19% of α epoxide; (c) excess i - $\mathrm{Bu}_{2} \mathrm{AlH}$, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 91 \%$; (d) excess 2,2-dimethoxypropane, 0.05 equiv of camphorsulphonic acid (CSA), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 90 \%$; (e) 1.0 equiv of n-Bu ${ }_{4} \mathrm{NF}(\mathrm{TBAF}), \mathrm{THF}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 95 \% . \mathrm{TPS}=\mathrm{Si}-t-\mathrm{BuPh}_{2}$.
confirmed its structure and those of its precursors and revealed the undesired regioselectivity of the Diels-Alder reaction.

Faced with this unfortunate regiochemical outcome, we then focused our attention on 3-hydroxy-2-pyrone (52, Scheme 7) as a diene in the Diels-Alder reaction. Although Corey ${ }^{26}$ has demonstrated that this system would give the opposite regiochemical pathway from that required for our purposes, the pioneering work of Narasaka ${ }^{27}$ afforded us the possibility for success in this endeavor. Scheme 7 demonstrates Narasaka's

[^5]Scheme 7. Synthesis of Common C-Ring Intermediate 55

55

54
${ }^{a}$ Reagents and conditions: 1.4 equiv of $52,1.4$ equiv of $\mathrm{PhB}(\mathrm{OH})_{2}$, PhH , reflux (Dean-Stark trap), 48 h , then 1.4 equiv of 2,2-dimethyl-1,3propanediol, $25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 79 \%$ based on 77% conversion of 42.
principle of temporarily tethering the two reaction partners in order to dictate the regiochemistry of the Diels-Alder reaction. Thus, reaction of dienophile 42 (prepared from 1,3-dihydroxy-cis-2- butene (37), Scheme 6) with 2-hydroxy-2-pyrone (52) in the presence of phenylboronic acid under dehydrating conditions led, after decomplexation with excess 2,2-dimethyl-1,3-propanediol, to compound 55. Evidently, the initially formed Diels-Alder product 54 promptly rearranges under the reaction conditions via intramolecular acyl transfer from the secondary to the primary hydroxyl group to afford the observed product in 79% yield based on 77% conversion of $\mathbf{4 2} .{ }^{28}$ Relief of strain in going from the [2.2.2] cycloaddition product 54 to the [3.4.0] bicyclic system 55 may be the primary reason for this facile rearrangement.

Scheme 8 demonstrates a number of useful transformations of compound 55 that led not only to confirmation of its structure but also to more advanced intermediates as required for our plans. Exhaustive acetylation of $\mathbf{5 5}$ led to diacetate 56 which exhibited significant downfield shifts in its proton NMR spectrum $\left(\mathrm{CDCl}_{3}, \delta \mathrm{Ha}, 4.59 \rightarrow 5.84\right.$ and $\left.\mathrm{Hb}, 3.10 \rightarrow 3.90\right)$. Pyridinium dichromate (PDC) oxidation ${ }^{29}$ of 55 furnished enone 57 in accord with the assigned structure (55), whereas persilylation of the same compound with TBSOTf ${ }^{30}$ gave the bis(silyl ether) 58 isolated as a C20 hydrate. The latter compound underwent selective reduction with LAH in $\mathrm{Et}_{2} \mathrm{O}$ at $0 \rightarrow 25^{\circ} \mathrm{C}$ to afford primary alcohol 59 (97\% yield) which was monodesilylated with camphorsulfonic acid (CSA) in $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ to afford the crystalline lactone diol 60 in 94% yield. X-ray crystallographic analysis of 60 (see ORTEP drawing, Figure 2) confirmed its structure and those of its progenitors. An NMR experiment ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) confirmed that neither acid (CSA) nor base (DMAP) causes any skeletal rearrangement of 55, serving as a control for the reactions summarized in Scheme 8.
b. The First Attempt at a CD Ring System. Oxetane Is Formed but Interferes with Subsequent Chemistry. One of our early plans was to construct a CD ring system with the oxetane ring already in place before coupling with a ring A

[^6]Scheme 8. Structural Confirmation of $\mathbf{5 5}^{a}$

${ }^{a}$ Reagents and conditions: (a) 5.0 equiv of $\mathrm{Ac}_{2} \mathrm{O}, 2.5$ equiv of 4-(dimethylamino)pyridine (DMAP), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 10 \mathrm{~min}, 100 \%$; (b) 1.2 equiv of pyridinium dichromate (PDC), $4-\AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 81 \%$; (c) 4.0 equiv of t - $\mathrm{BuMe}_{2} \mathrm{SiOTf}, 4.0$ equiv of 2,6 -lutidine, 0.1 equiv of DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 4 \mathrm{~h}, 92 \%$; (d) 1.1 equiv of LiAlH_{4}, $\mathrm{Et}_{2} \mathrm{O}, 0 \rightarrow 25^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 97 \%$; (e) 0.05 equiv of camphorsulfonic acid (CSA), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 94 \% . \mathrm{TBS}=\mathrm{Si}-t-\mathrm{BuMe}_{2}, \mathrm{Tf}=\mathrm{SO}_{2} \mathrm{CF}_{3}$.
hydrazone. To this end, diol 55 (Scheme 9) was dibenzylated using excess KH and benzyl bromide ${ }^{31}$ to afford compound 61 which was then reduced with excess LAH in ether at $0^{\circ} \mathrm{C}$ to give hydroxy lactol 62 as a $1: 1$ mixture of diastereoisomers (71% yield from 55). Selective monoprotection of the primary alcohol using tert-butyldiphenylsilyl chloride (TPSCl) and imidazole in DMF 32 followed by further reduction of the lactol with LAH in THF at $25^{\circ} \mathrm{C}$ furnished diol 64 in 78% yield. Reaction of 64 with pivaloyl chloride (1.05 equiv) under basic conditions led to a 1:3.2 mixture of the two pivaloate esters 65 and 66 which were chromatographically separated.
The next task was the introduction of an alcohol at C5. Even though a previous study ${ }^{33}$ had shown that the primary hydroxyl group in a similar system could be used to direct the hydroboration of the cyclohexene double bond, the feasibility of using a mesylate $\left(\mathrm{SO}_{2} \mathrm{CH}_{3}\right)$ as a possible directing group in this hydroboration ${ }^{34}$ was explored. Such a method would more efficiently lead to the targeted oxetane system. Indeed hydroboration of 68 , prepared from 65 by standard mesylation, with borane in THF $\left(0-25^{\circ} \mathrm{C}\right)$ followed by oxidative workup, led to the formation of the C 5 alcohol 69 as the major product and in 53% yield. Treatment of the latter compound with NaH in THF at $45^{\circ} \mathrm{C}$ resulted in the formation of oxetane 70 in 86% yield, confirming the stereochemical orientation of the newly generated alcohol in 69. Attempts to reach the targeted C 2 aldehyde were, however, thwarted by failure to cleanly remove the pivaloate group from 70, presumably due to interference from the oxetane ring under the reductive or basic conditions employed in these attempts. Nevertheless, this sequence confirmed the potential feasibility of constructing the oxetane ring by this method and rendered the aldehyde 67

[^7]Scheme 9. Synthesis of Oxetane-Containing C-ring 70 ${ }^{a}$

67

64

$+$
66

65

70
69
68
${ }^{a}$ Reagents and conditions: (a) 3.5 equiv of $\mathrm{PhCH}_{2} \mathrm{Br}, 3.5$ equiv of KH , 0.05 equiv of $n-\mathrm{Bu}_{4} \mathrm{NI} 0^{\circ} \mathrm{C} \rightarrow 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 75 \%$; (b) 2.0 equiv of LiAlH_{4}, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 94 \%$; (c) 1.4 equiv of $\mathrm{TPSCl}, 1.5$ equiv of imidazole, DMF, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}, 25^{\circ} \mathrm{C}, 4 \mathrm{~h}$, then excess n-BuanF, THF, $10 \mathrm{~h}, 82 \%$ based on 54% conversion; (d) 1.3 equiv of $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C} \rightarrow 25^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$, 96%; (e) 1.05 equiv of $\mathrm{PivCl}, 1.5$ equiv of 4 -(dimethylamino)pyridine (DMAP), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 55 \%$ of 66 , plus 17% of 65 , plus 24% of C2-C20 dipivalate, based on 84% conversion; (f) 0.05 equiv of tetrapropylammonium perruthenate (TPAP), 1.5 equiv of 4 -methylmorpholine N-oxide (NMO), $\mathrm{CH}_{3} \mathrm{CN}, 25^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 91 \%$; (g) 1.5 equiv of $\mathrm{MsCl}, 2.0$ equiv of DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow 25^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 95 \%$; (h) 10 equiv of $\mathrm{BH}_{3} \cdot \mathrm{THF}$, THF, $25^{\circ} \mathrm{C}, 10 \mathrm{~h}$, then excess $\mathrm{H}_{2} \mathrm{O}_{2}$, aqueous $\mathrm{NaHCO}_{3}, 53 \%$; (i) 5.0 equiv of $\mathrm{NaH}, \mathrm{THF}, 45^{\circ} \mathrm{C}, 3 \mathrm{~h}, 86 \% . \mathrm{Bn}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{TPS}=\mathrm{Si}-t-$ $\mathrm{BuPh}_{2}, \mathrm{Piv}=\mathrm{CO}-t-\mathrm{Bu}, \mathrm{Ms}=\mathrm{SO}_{2} \mathrm{CH}_{3}$.
available through oxidation of 66 using the TPAP-NMO method. ${ }^{20}$ The latter compound was utilized in a subsequent attempt to construct the ABC ring skeleton of Taxol (1) as will be discussed in a later section of this paper.
c. A Second Attempt at the CD Ring System. Success but the Oxetane Ring Interferes Again after the Shapiro Coupling. After our first attempt to construct a suitable CD aldehyde failed, we quickly redesigned our approach, choosing new protecting groups and targeting aldehyde 79 as a potential electrophile for the Shapiro coupling. Scheme 10 outlines the chemistry involved in this second approach. Thus, upon treatment with KH and TBSCl, intermediate 55 underwent skeletal rearrangement involving acyl migration from the primary to the secondary hydroxyl group, presumably driven by trapping of the primary hydroxyl as a silyl ether, to afford 71. Protection of the tertiary alcohol as a methoxymethyl (MOM) ether ${ }^{7}$ led to 72. Reduction of the ester and lactone functionalities in 72 using excess LAH in THF formed triol 73. Introduction of the benzylidene group ${ }^{35}$ protected the C7C9 diol system in the latter compound, furnishing 74 in 72% yield from 72. The possibility of generating a C7 benzyl, C9 hydroxy derivative directly from the benzylidene ${ }^{36}$ dictated the choice of this protecting group. Directed hydroboration of olefin

[^8]Scheme 10. Synthesis of ACD Ring System $81{ }^{a}$

80
81
${ }^{a}$ Reagents and conditions: (a) 2.0 equiv of $\mathrm{KH}, 1.2$ equiv of TBSCl , THF, $25^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 61 \%$; (b) 2.0 equiv of MOMCl, 1.5 equiv of $\mathrm{KH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 92 \%$; (c) 5.0 equiv of $\mathrm{LiAlH}_{4}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}$; (d) 3.8 equiv of $\mathrm{PhCH}(\mathrm{OMe})_{2}, 0.05$ equiv of camphorsulfonic acid (CSA), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25$ ${ }^{\circ} \mathrm{C}, 72 \%$ from 72; (e) 3.0 equiv of $\mathrm{BH}_{3} \cdot \mathrm{THF}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 10 \mathrm{~h}$, then excess $\mathrm{H}_{2} \mathrm{O}_{2}$, aqueous $\mathrm{NaHCO}_{3}, 37 \%$; (f) 1.6 equiv of $\mathrm{TsCl}, 3.0$ equiv of 4-(dimethylamino)pyridine (DMAP), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 5 \mathrm{~h}$; (g) 2.2 equiv of $\mathrm{NaH}, \mathrm{THF}, 45^{\circ} \mathrm{C}, 10 \mathrm{~h}, 78 \%$ from 75; (h) excess n-Bu $\mathrm{NF}, \mathrm{THF}, 25^{\circ} \mathrm{C}$, $2 \mathrm{~h}, 95 \%$; (i) 3.0 equiv of Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}$, 91%; (j) 1.2 equiv of $15,2.4$ equiv of n - $\mathrm{BuLi}, \mathrm{THF},-78^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 80 \%$, then $0^{\circ} \mathrm{C}$; 1.0 equiv of 79 , THF, $0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 85 \%$ (ca. 5:3 mixture); (k) excess t - $\mathrm{BuOOH}, 0.05$ equiv of $\mathrm{VO}(\mathrm{acac})_{2}, \mathrm{PhH}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h} . \mathrm{MOM}=$ methoxymethyl, TBS $=\mathrm{Si}-t-\mathrm{BuMe}_{2}, \mathrm{Ts}=\mathrm{SO}_{2}-p$-Tol, acac $=$ acetylacetonate.
74 resulted in the formation of the C5 β-hydroxy compound 75 in 37% yield. Tosylation (80%) of the latter followed by exposure to NaH in THF at $45^{\circ} \mathrm{C}$ led to oxetane 77 (78\%) via tosylate 76. Finally, desilylation of 77 using TBAF, ${ }^{37}$ followed by Dess-Martin oxidation, ${ }^{38}$ furnished aldehyde 79 via 78 in 86% overall yield. The Shapiro reaction proceeded well in combining hydrazone 15 and aldehyde 79 to produce alcohol 80 (85%, mixture of diastereoisomers, Scheme 10). Epoxide 81 could not, however, be cleanly obtained from the major isomer 80 using the vanadium-catalyzed procedure.

Due to the problems encountered in the two approaches discussed above, the strategy of having the oxetane installed in the molecule prior to the coupling reactions was abandoned in favor of schemes involving oxetane construction at a later stage.
d. Successful Progression to the McMurry Cyclization Stage. Having just experienced the complications of the highly

[^9]Scheme 11. Synthesis of A-C Ring System 87^{a}

${ }^{a}$ Reagents and conditions: (a) 3.0 equiv of Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C} \rightarrow 25^{\circ} \mathrm{C}, 12 \mathrm{~h}$; (b) excess of $\mathrm{HC}(\mathrm{OMe})_{3}, 0.05$ equiv of camphorsulfonic acid (CSA), $\mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 81 \%$ from $\mathbf{6 2}$; (c) 1.2 equiv of $\mathrm{LiAlH}_{4}, \mathrm{THF}$, reflux, 1 h ; (d) 1.5 equiv of $\mathrm{PivCl}, 5.0$ equiv of 4-(dimethylamino)pyridine (DMAP), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}, 70 \%$ from 83; (e) 1.7 equiv of Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 83 \%$; (f) $15,2.2$ equiv of n-BuLi, THF, $-78^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$, then $0^{\circ} \mathrm{C}$; 1.2 equiv of 86, THF $,-40^{\circ} \mathrm{C}, 5 \mathrm{~min}, 74 \% . \mathrm{Bn}=\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{Piv}=\mathrm{CO}-t-\mathrm{Bu}, \mathrm{TBS}=$ $\mathrm{Si}-\boldsymbol{t}$-BuMe ${ }_{2}$.
oxygenated intermediates of the previous schemes, we decided to minimize such problems by targeting aldehyde 86 (Scheme 11). Oxidation of intermediate $\mathbf{6 2}$, readily available as described in Scheme 10, with Dess - Martin 38 reagent afforded aldehyde lactone 82. Protection of the aldehyde as a methoxy acetal ${ }^{39}$ produced compound 83 (81% yield from 62) which was then reduced with LAH in THF at reflux to give diol 84. Treatment of the latter compound with pivaloyl chloride in the presence of DMAP ${ }^{40}$ selectively protected the C 20 alcohol as a pivaloate ester, leading to intermediate $\mathbf{8 5}$ in 70% yield from $\mathbf{8 3}$. Molecular models revealed the C 2 hydroxyl group of $\mathbf{8 4}$ to be more crowded [interference from bis(methoxy) group] than the C20 hydroxyl group (pseudo axial position) and thus the selectivity observed. Finally, oxidation with either TPAPNMO^{20} or Dess-Martin reagent ${ }^{38}$ easily converted compound $\mathbf{8 5}$ to aldehyde 86 (83% yield).

With the aldehyde 86 in hand, we then proceeded to the Shapiro reaction utilizing hydrazone $\mathbf{1 5}$ as the precursor to the vinyllithium reagent. This coupling reaction furnished alcohol 87 as a single diastereoisomer in 74% yield. X-ray crystallographic analysis allowed the assignment of the stereochemistry of this intermediate (see ORTEP drawing, Figure 2). The stereoselectivity of this reaction can be explained by invoking 6 -membered ring chelate intermediate 88, as shown in Figure 3. In this model, the re face of the aldehyde is more accessible to nucleophilic attack than the si face due to shielding by the C8 methyl and C20 pivaloyl groups.

[^10]

88: L^{+}chelate derived from aldehyde 86

Figure 3. Stereoselectivity of the Shapiro reaction. The model was generated with Chem3d, most hydrogens are omitted for clarity.

Early attempts to unblock the aldehyde group of $\mathbf{8 7}$ under acidic conditions failed due to formation of a cyclic hemiacetal with the C2 hydroxyl group. Epoxidation of the allylic system in 87 proved rather slow and, therefore, the C20 hydroxyl group was called upon to assist in this reaction. Treatment of 87 with LAH in ether resulted in the formation of diol 89 (88% yield) which underwent smooth epoxidation with ${ }^{\mathrm{B}} \mathrm{BuOOH}$ in the presence of $\mathrm{VO}(\mathrm{acac})_{2}$ catalyst to afford epoxide 90 in 82% yield (Scheme 12).

At this point our plan involved engaging the two hydroxyl groups of our latest intermediate (90) in a cyclic system in order to both prevent the undesired hemiacetal formation and to preorganize the substrate prior to the construction of ring B. To this end, diol 90 was treated with phosgene in the presence of pyridine ${ }^{41}$ in an attempt to produce the 7 -membered ring carbonate. These conditions, however, produced exclusively the tetrahydrofuran derivative 91, presumably via nucleophilic attack by the C2 hydroxyl group on the activated C20 chloroformyl intermediate. To circumvent this problem, both alcohols were engaged in a cyclic lactone by exposure of diol 90 to Dess-Martin reagent, ${ }^{38}$ giving the γ-lactone 92 in 61% yield.

Removal of the silyl group from compound 92, followed by oxidation with Dess-Martin reagent, ${ }^{38}$ afforded aldehyde 94, via intermediate alcohol 93, in 71% overall yield. Revealing the C9 aldehyde by exposure to trifluoroacetic acid ${ }^{42}$ (TFA) at $0^{\circ} \mathrm{C}$, produced, in addition to dialdehyde 95 (51% yield), the conjugated system 96 (24\%) (Scheme 13), presumably arising from 95 via acid-induced epoxide opening.

Several attempts to cyclize dialdehyde 95 using the McMurry reaction under a variety of conditions were unsuccessful. The only detectable product was the diol 97 , apparently produced by reduction of both aldehyde groups. It became clear that this particular design did not favor the required ring closure and that we had to design yet another synthetic sequence.
e. First Attempt with the C1-C2-Carbonate Approach. Aiming to enforce a different conformation in the McMurry substrate, we decided to introduce a $\mathrm{C} 1-\mathrm{C} 2$-carbonate ring.

[^11]Scheme 12. Synthesis of Lactone $\mathbf{9 3}^{a}$

91

93
${ }^{a}$ Reagents and conditions: (a) 2.0 equiv of $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O},-10^{\circ} \mathrm{C}, 5$ $\min , 88 \%$; (b) 2.0 equiv of $t-\mathrm{BuOOH}, 0.25$ equiv of $\mathrm{VO}(\mathrm{acac})_{2}, \mathrm{PhH}, 25$ ${ }^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 82 \%$; (c) 5.0 equiv of phosgene, pyridine, $75^{\circ} \mathrm{C}, 2.5 \mathrm{~h}, 35 \%$; (d) 10 equiv of Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 50^{\circ} \mathrm{C}, 1 \mathrm{~h}, 61 \%$; (e) excess n-Bu ${ }_{4} \mathrm{NF}$, THF, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (f) 5.0 equiv of Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 71 \%$ from 92. TBS $=\mathrm{Si}-t-\mathrm{BuMe} 2, \mathrm{Bn}=\mathrm{CH}_{2} \mathrm{Ph}$, $\operatorname{Piv}=\mathrm{CO}-t-\mathrm{Bu}, \mathrm{acac}=$ acetylacetonate.
Molecular modeling (Sybyl) indicated that this functionality would preorganize the expected intermediate geometry by bringing the two aldehydes to the same face of the molecule. Learning from our previous experience with protecting groups, we decided to utilize aldehyde 67 (prepared as described in Scheme 9 , above) and hydrazone 15 as partners for the Shapiro reaction. Thus (as shown in Scheme 14) the Shapiro reaction produced compound 98, as a single isomer (stereochemistry confirmed by X-ray crystallographic analysis of subsequent intermediate 103) in 82% yield. Deprotection with LAH afforded diol 99 (87% yield). Vanadium-catalyzed epoxidation of $\mathbf{9 9}$ with ${ }^{\text {t }} \mathrm{BuOOH}$ led stereoselectively to epoxide 100 in 95% yield. Regioselective epoxide opening with LAH gave triol 101 in 78% yield based on 81% conversion. Selective protection of the primary alcohol in $\mathbf{1 0 1}$ as a MOM ether proceeded smoothly under standard conditions to afford compound 102 in almost quantitative yield. Diacetate 103 was prepared using acetic anhydride and DMAP (83% yield). X-ray crystallographic analysis of the latter compound confirmed the previously proposed stereochemistry (see ORTEP drawing, Figure 2).

By this time both our model studies and degradation work ${ }^{1}$ pointed to a carbonate protecting group at $\mathrm{C} 1-\mathrm{C} 2$ as the most suitable device for our synthetic scheme. In order to install the latter into our intermediate (102), it was necessary to use rather strong conditions (excess KH, phosgene, ether:HMPA, $1: 1,25^{\circ} \mathrm{C}, 88 \%$ yield based on 57% conversion) as compared to those used in making the taxoid carbonate $\Pi .{ }^{1}$ The flexibility of the 1,2 -diol 102 as compared to the rigidity of the corresponding taxoid diol employed in the degradation studies is

Scheme 13. First Attempt at the McMurry Cyclization ${ }^{a}$

97
96
${ }^{a}$ Reagents and conditions: (a) trifluoroacetic acid neat, $0^{\circ} \mathrm{C}, 15 \mathrm{~min}$, 51%; (b) 10 equiv of $\mathrm{TiCl}_{3} \cdot(\mathrm{DME})_{1.5}, 15$ equiv of $\mathrm{Zn}-\mathrm{Cu}, \mathrm{DME}, 60^{\circ} \mathrm{C}, 4$ $\mathrm{h}, 95$ added over 5 h (syringe pump), then $55^{\circ} \mathrm{C}, 3 \mathrm{~h}, 34 \%$ based on 43% conversion. $\mathrm{Bn}=\mathrm{CH}_{2} \mathrm{Ph}$.
probably responsible for this relative unreactivity. The carbonate 104 was then desilylated with fluoride ion and oxidized with TPAP $-\mathrm{NMO}^{20}$ to afford dialdehyde 106 via the corresponding diol (105) in 80% overall yield.

With the requisite dialdehyde 106 in hand, we proceeded to investigate its conversion to a cyclic taxoid system through McMurry coupling. In traversing the temperature range from 0 to $70^{\circ} \mathrm{C}$, no cyclic coupling products were observed; at 85 ${ }^{\circ} \mathrm{C}$, however, a 15% yield of the cyclic olefin 107 (Scheme 14) was isolated, suggesting that the desired cyclic diol might remain elusive even with these rigid precursors. The conclusion was that further preorganization was needed in order to lower the activation energy to avoid deoxygenation of carbons 9 and 10 during the McMurry cyclization.

Conclusion

In this paper we described the evolution of the chemistry that eventually led to a successful construction of a taxoid system containing the ABC ring framework of Taxol (1). While the construction of a suitable ring A fragment proceeded smoothly via a Diels-Alder approach, that of a suitable ring C fragment presented more difficulties. Although the highly functionalized and stereochemically defined ring C intermediate was easily produced via a boron template controlled reaction, the finetuning of the functional groups for proper elaboration required considerable experimentation. Through the process of design, experimentation, and redesign, however, enough knowledge was gathered that made the final push toward a suitable ABC taxoid ring system possible. This final and successful approach is discussed in the following paper.

Experimental Section

General Techniques. For a description of general technique, see the first paper in this series. ${ }^{1}$ Experimental techniques and data for compounds $10-14,16,18-35,47-51,57,58,61-80,82-87$, and $89-107$ can be found in the supplementary material.

Diene 3. A solution of ketone $2(245.0 \mathrm{~g}, 1.44 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}(1500$ mL) at $0^{\circ} \mathrm{C}$ was treated with methylmagnesium bromide (576 mL of a 3.0 M solution in $\mathrm{Et}_{2} \mathrm{O}, 1.73 \mathrm{~mol}$). The reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$ and stirred for 8 h . After cooling to $0^{\circ} \mathrm{C}$, the reaction was quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}(600 \mathrm{~mL})$. The organic layer was separated and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 400 \mathrm{~mL})$ and brine $(400 \mathrm{~mL})$.

Scheme 14. Formation of the ABC taxoid system 107 by a McMurry cyclization ${ }^{a}$

${ }^{a}$ Reagents and conditions: (a) 1.3 equiv of $15,2.6$ equiv of $n-\mathrm{BuLi}$, THF, $-78^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$, then $0^{\circ} \mathrm{C}, 1.0$ equiv of 67, THF, $-78^{\circ} \mathrm{C}, 20 \mathrm{~min}$, 82%; (b) 2.0 equiv of $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 87 \%$; (c) 2.0 equiv of t - $\mathrm{BuOOH}, 0.05$ equiv of $\mathrm{VO}(\mathrm{acac})_{2}, \mathrm{PhH}, 25^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 95 \%$; (d) 15 equiv of $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h}, 78 \%$ based on 81% conversion; (e) 10 equiv of MOMCl, 12 equiv of $i-\mathrm{Pr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 10 \mathrm{~h}, 99 \%$; (f) excess $n-\mathrm{Bu}_{4} \mathrm{NF}$ (TBAF), THF, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}$, then 4.0 equiv of $\mathrm{Ac}_{2} \mathrm{O}, 6.0$ equiv of 4 (dimethylamino)pyridine (DMAP), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 83 \%$; (g) 5.0 equiv of phosgene, 5.0 equiv of $\mathrm{KH}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{HMPA}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 88 \%$ based on 57% conversion; (h) excess TBAF, THF, $25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 88 \%$; (i) 0.05 equiv of tetrapropylammonium perruthenate (TPAP), 3.0 equiv of 4 -methylmorpholine N -oxide (NMO), $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{CH}_{2} \mathrm{Cl}_{2}(1: 1), 25^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 91 \%$; (j) 10 equiv of TiCl_{3} (DME) $)_{1.5}, 20$ equiv of $\mathrm{Zn}-\mathrm{Cu}$, DME, reflux, $3 \mathrm{~h}, 106$ added over 1 h , then $1.5 \mathrm{~h}, 15 \%$. Piv = CO-t-Bu, TBS $=\mathrm{Si}-t-\mathrm{BuMe}_{2}, \mathrm{Bn}=$ $\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{TPS}=\mathrm{Si}-t-\mathrm{BuPh}_{2}, \mathrm{MOM}=$ methoxymethyl.

The combined aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 200 \mathrm{~mL})$. The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give the corresponding alcohol which was taken in the next step without further purification.

A solution of the previous alcohol in benzene (600 mL) was treated with p-toluenesulfonic acid ($54 \mathrm{~g}, 276 \mathrm{mmol}$) and heated to $65^{\circ} \mathrm{C}$ for 3 h . After being cooled to $25^{\circ} \mathrm{C}$, the reaction mixture was treated with $E t_{3} \mathrm{~N}(39 \mathrm{~mL}, 280 \mathrm{mmol})$, diluted with $\mathrm{Et}_{2} \mathrm{O}(600 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(400 \mathrm{~mL})$, aqueous $\mathrm{NaHCO}_{3}(400 \mathrm{~mL})$, and brine (400 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated (bath temperature $<30^{\circ} \mathrm{C}$), and distilled
($40-45^{\circ} \mathrm{C}, 0.05 \mathrm{mmHg}$) to give $3(169 \mathrm{~g}, 70 \%)$ as a colorless liquid: $R_{f}=0.35$ (silica, $2 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 5.05(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HC}=\mathrm{C}), 4.74(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{HC}=\mathrm{C}), 4.14\left(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.97(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{C}=\mathrm{CH}_{2}\right), 1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right), 1.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right), 1.24$ ($\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$).

Alcohol 4. A solution of ester $3(169 \mathrm{~g}, 1.01 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1000$ mL) at $-78^{\circ} \mathrm{C}$ was treated with diisobutylaluminum hydride (2220 mL of a 1.0 M solution in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.22 \mathrm{~mol}$) and stirred at $-78^{\circ} \mathrm{C}$ for 0.5 h . The reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$ and stirred for 12 h . The reaction mixture was slowly poured into a mixture of ice $(600 \mathrm{~mL})$ and glacial acetic acid (300 mL), and the resulting mixture was stirred for 3.5 h . The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 500 \mathrm{~mL})$. The combined organic layer was washed with brine $(2 \times 500 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated (bath temperature $<25^{\circ} \mathrm{C}$), and purified by flash chromatography (silica, $20 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to give $4(117.4 \mathrm{~g}, 92 \%)$ as a pale yellow oil: R_{f} $=0.26$ (silica, $20 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether); ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.08\left(\mathrm{~b} \mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.71(\mathrm{~b} \mathrm{~d}, J=1.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 1.82(\mathrm{t}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right) \mathrm{C}=\mathrm{CH}_{2}\right), 1.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\left(\mathrm{CH}_{3}\right)_{2}\right), 1.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\left(\mathrm{CH}_{3}\right)_{2}\right)$.

Acetate 5. A solution of alcohol $4(113.6 \mathrm{~g}, 0.9 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1000 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was treated with $\mathrm{Et}_{3} \mathrm{~N}(150.5 \mathrm{~mL}, 1.08 \mathrm{~mol})$, 4-(dimethylamino)pyridine (DMAP, $22 \mathrm{~g}, 0.18 \mathrm{~mol}$), and $\mathrm{Ac}_{2} \mathrm{O}$ (94.3 $\mathrm{mL}, 1.0 \mathrm{~mol}$). The reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$ and stirred for 1 h . The reaction mixture was washed with $\mathrm{H}_{2} \mathrm{O}(2 \times$ 300 mL) and brine (300 mL), and the combined aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 300 \mathrm{~mL})$. The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and purified by flash chromatography (silica, $5 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to give $5(145.4 \mathrm{~g}, 96 \%)$ as a pale yellow oil: $R_{f}=0.66$ (silica, $20 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right.$ and $\mathrm{CH}_{2} \mathrm{OAc}$), $2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right), 1.75$ (s, 3 $\mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}$), $1.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}=\mathrm{C}\right)$.

Chloro Nitrile 7. A mixture of diene $5(90.3 \mathrm{~g}, 537 \mathrm{mmol})$ and freshly distilled 2-chloroacrylonitrile ($65 \mathrm{~mL}, 806 \mathrm{mmol}$, purchased from Tokyo-Kasei) was stirred at $130^{\circ} \mathrm{C}$ in a sealed tube for 72 h . During the course of the reaction, the reaction mixture turned dark brown. The reaction mixture was allowed to cool to $25^{\circ} \mathrm{C}$ and purified by flash chromatography (silica, $10 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to give $7(110 \mathrm{~g}, 80 \%)$ as clear crystals: $\mathrm{mp} 86-88^{\circ} \mathrm{C}$, from $\mathrm{Et}_{2} \mathrm{O} ; R_{f}=0.25$ (silica, $10 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether); IR (thin film) $\nu_{\max } 2979,2938$, $1730,1436,1370,1240 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.63(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OAc}$), $2.48-2.29$ (band, $4 \mathrm{H}, 13-\mathrm{CH}_{2}$ and $14-\mathrm{CH}_{2}$), $2.07(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.75\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right), 1.39\left(\mathrm{~s}, 3 \mathrm{H}, 16-\mathrm{CH}_{3}\right), 1.28(\mathrm{~s}, 3$ $\mathrm{H}, 17-\mathrm{CH}_{3}$); FAB HRMS (NBA/CsI) $m / e 388.0080, \mathrm{M}+\mathrm{Cs}^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{ClO}_{2} \mathrm{~N} 388.0080$.

Hydroxy Ketone 8. A solution of chloro nitrile $7(15 \mathrm{~g}, 58.7 \mathrm{mmol})$ and $\mathrm{KOH}(19.8 \mathrm{~g}, 352 \mathrm{mmol})$ in $t-\mathrm{BuOH}(293 \mathrm{~mL})$ was heated to 70 ${ }^{\circ} \mathrm{C}$ and stirred for 4 h . After being cooled to $25^{\circ} \mathrm{C}$, the reaction mixture was diluted with EtOAc (1000 mL) and washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 300$ mL) and brine (300 mL). The combined aqueous layer was extracted with $\mathrm{EtOAc}(4 \times 200 \mathrm{~mL})$, and the combined organic layer was dried (MgSO_{4}), concentrated, and purified by flash chromatography (silica, $25 \rightarrow 30 \%$ EtOAc in benzene) to give $7(4.5 \mathrm{~g}, 30 \%)$ and $8(6.2 \mathrm{~g}$, 90% based on 70% conversion) as a pale orange oil: $R_{f}=0.30$ (silica, $30 \% \mathrm{EtOAc}$ in benzene); IR (thin film) $\nu_{\max } 3410,2980,2930,1710$, $991 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.53$ ($\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 13-\mathrm{CH}_{2}$), $2.38\left(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, 14-\mathrm{CH}_{2}\right.$), 1.84 (s, $3 \mathrm{H}, 18-\mathrm{CH}_{3}$), $1.44(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.19\left(\mathrm{~s}, 6 \mathrm{H}, 16-\mathrm{CH}_{3}\right.$ and $17-$ CH_{3}) ; FAB HRMS (NBA/NaI) m/e 191.1048, $\mathrm{M}+\mathrm{Na}^{+}$calcd for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{2} 191.1050$.

TBS Ether 9. A solution of alcohol $8(4.00 \mathrm{~g}, 23.8 \mathrm{mmol})$ and imidazole ($1.95 \mathrm{~g}, 28.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was treated with tert-butyldimethylsilyl chloride ($\mathrm{TBSCl}, 3.96 \mathrm{~g}, 26.2 \mathrm{mmol}$), allowed to warm to $25^{\circ} \mathrm{C}$, and stirred for 2 h . After dilution with $\mathrm{Et}_{2} \mathrm{O}(300 \mathrm{~mL})$, the reaction mixture was washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, concentrated, and purified by flash chromatography (silica, $5 \rightarrow 10 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to give 9 ($5.71 \mathrm{~g}, 85 \%$) as a pale yellow oil: $R_{f}=0.48$ (silica, $10 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether); IR (thin film) $\nu_{\max }$ 2929, 2857, 1716, 1462, 1377, $1253 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 4.12\left(\mathrm{~s}, 2 \mathrm{H}, 10-\mathrm{CH}_{2}\right), 2.51$
$\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 13-\mathrm{CH}_{2}\right), 2.36\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 14-\mathrm{CH}_{2}\right), 1.74$ (s, $3 \mathrm{H}, 18-\mathrm{CH}_{3}$), $1.18\left(\mathrm{~s}, 6 \mathrm{H}, 16-\mathrm{CH}_{3}\right.$ and $\left.17-\mathrm{CH}_{3}\right), 0.87(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 215.2,135.6,131.8,59.2,41.2,35.7,30.5,25.8,24.6,22.5$, 18.2, -5.5 ; FAB HRMS (NBA/CsI) m/e 697.3056, M + Cs ${ }^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}$ 697.3085.

TBS Hydrazone 15. A solution of ketone $9(2.79 \mathrm{~g}, 9.88 \mathrm{mmol})$ in THF (33 mL) at $25^{\circ} \mathrm{C}$ was treated with ($2,4,6$-triisopropylbenzenesulfonyl)hydrazine ($2.95 \mathrm{~g}, 9.88 \mathrm{mmol}$) and stirred for 24 h . The reaction mixture was concentrated, and the solid residue was dissolved in a minimum amount of $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The solution was diluted with petroleum ether (50 mL) and cooled to $-20^{\circ} \mathrm{C}$ to induce crystallization. After removal of the mother liquor by filtration, the crystalline material was washed with petroleum ether (30 mL) and dried in vacuo to give $15(4.89 \mathrm{~g}, 88 \%)$ as colorless crystals: $\mathrm{mp} 135-137^{\circ} \mathrm{C}$, from $\mathrm{Et}_{2} \mathrm{O}-$ petroleum ether, $R_{f}=0.24$ (silica, $20 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether); IR (thin film) $v_{\max } 3250,2957,1600 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.68$ (b s, $1 \mathrm{H}, \mathrm{NH}$), 7.21 (s, $2 \mathrm{H}, \mathrm{Ar}$), 4.28 (septet, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.o-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.14\left(\mathrm{~s}, 2 \mathrm{H}, 10-\mathrm{CH}_{2}\right), 2.95($ septet, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.p-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.44\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, 13-\mathrm{CH}_{2}\right), 2.21(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, 14-\mathrm{CH}_{2}\right), 1.75\left(\mathrm{~s}, 3 \mathrm{H}, 18-\mathrm{CH}_{3}\right), 1.33(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 12 \mathrm{H}, o-\mathrm{CH}-$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 1.32\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}, p-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.13\left(\mathrm{~s}, 6 \mathrm{H}, 16-\mathrm{CH}_{3}\right.$ and $\left.17-\mathrm{CH}_{3}\right), 0.92\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.10\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}{ }^{-}\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.0,152.9,151.1,136.0$, 131.5, 131.4, 124.0, 123.4, 59.0, 42.2, 34.1, 30.6, 29.8, 26.0, 26.0, 25.9, $25.9,25.8,24.9,24.8,24.7,24.6,23.5,21.4,19.5,18.3,-5.4$, FAB HRMS (NBA) $m / e 563.3716, \mathrm{M}+\mathrm{H}^{+}$calcd for $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{O}_{3} \mathrm{~N}_{2} \mathrm{SSi}$ 563.3703.

Aldehyde 39. A solution of 1,4-dihydroxy-cis-2-butene ($137 \mathrm{~g}, 1.56$ mol) and p-toluenesulfonic acid ($1.35 \mathrm{~g}, 7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2000 mL) at $25^{\circ} \mathrm{C}$ was treated with dihydropyran ($300 \mathrm{~mL}, 3.29 \mathrm{~mol}$), dropwise, over the period of 0.5 h . After being stirred for 10 min , the mixture was treated with $\mathrm{Et}_{3} \mathrm{~N}(2.0 \mathrm{~mL}, 14 \mathrm{mmol})$, reduced in volume to a total of 2 L , treated with decolorizing carbon, filtered through a pad of silica gel, and concentrated to give a yellow oil that was taken to the next step without further purification: $R_{f}=0.30$ (silica, 25% EtOAc in hexanes); IR (thin film) $\boldsymbol{\nu}_{\max } 2950,2800,1200,1050 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.65(\mathrm{t}, J=5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}), 4.55(\mathrm{~b}$ $\mathrm{s}, 2 \mathrm{H}, \mathrm{OCHO}$), 4.19 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.03 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.77 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CHCH}_{2} \mathrm{O}$), $3.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\right.$), 1.75-1.43 (band, $\left.12 \mathrm{H}, \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{~Hz}, \mathrm{CDCl}_{3}$) $\delta 129.0,97.7,62.6,61.9,30.4$, 25.3, 19.2; FAB HRMS (NBA/NaI) m/e 279.1572, M + Na ${ }^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{4} 279.1572$.

A solution of the previous alkene ($200 \mathrm{~g}, 0.78 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(600$ mL) was treated with ozone at $-78^{\circ} \mathrm{C}$ until the solution turned blue. The reaction was quenched by the careful addition of triphenylphosphine ($205 \mathrm{~g}, 0.78 \mathrm{~mol}$) in portions. The mixture was allowed to warm to $25^{\circ} \mathrm{C}$ over the period of 8 h , concentrated, washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times$ 500 mL), and filtered. The combined washes were concentrated and purified by flash chromatography (silica, 25% EtOAc in hexanes) to give aldehyde 39 ($220 \mathrm{~g}, 98 \%$) as a clear oil: $R_{f}=0.20$ (silica, 25% EtOAc in hexanes); IR (thin film) $v_{\text {max }}$ 2944, 2889, 1739, 1136, 1078 , 1033; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.72$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{HCO}$), 4.63 ($\mathrm{t}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OCHO}), 4.22\left(\mathrm{~d}, J=18.0 \mathrm{~Hz}, \mathrm{~A}\right.$ of $\left.\mathrm{AB}, \mathrm{COCH}_{2} \mathrm{O}\right), 4.16$ ($\mathrm{d}, J=18.0 \mathrm{~Hz}, \mathrm{~B}$ of $\mathrm{AB}, \mathrm{COCH}_{2} \mathrm{O}$), $3.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right.$), 3.50 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $2.00-1.50$ (band, $4 \mathrm{H}, \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{Hz}, \mathrm{CDCl}_{3}\right) \delta 201.2,99.4,72.9,62.5,30.2,25.1,19.6$; FAB HRMS ($\mathrm{NBA} / \mathrm{NaI}$) m / e 167.0684, $\mathrm{M}+\mathrm{Na}^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{3} 167.0684$.

Silyl Ether 40. Aldehyde 38 from 36. To a solution of allylic alcohol $36(11.6 \mathrm{~g}, 200.0 \mathrm{mmol})$ and imidazole ($15.7 \mathrm{~g}, 230.9 \mathrm{mmol}$) in DMF (200 mL) was added tert-butylchlorodiphenylsilane (58.4 mL , 220.0 mmol) dropwise at $0^{\circ} \mathrm{C}$. The solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h. After dilution with $\mathrm{Et}_{2} \mathrm{O}(500 \mathrm{~mL})$, the solution was washed with aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, and brine (100 mL). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to give the corresponding crude silyl ether (66.2 g) which was taken to the next step without further purification.

A fraction of the crude silyl ether (13.0 g) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(300 \mathrm{~mL}\right.$) and treated with O_{3} at $-78{ }^{\circ} \mathrm{C}$ for 1 h . The reaction was quenched with $\mathrm{Ph}_{3} \mathrm{P}(25.0 \mathrm{~g}, 96.0 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, and the resulting mixture was allowed to warm to $25^{\circ} \mathrm{C}$. After being stirred at $25^{\circ} \mathrm{C}$ for 0.5 h , the reaction mixture was diluted with toluene $(100 \mathrm{~mL})$ and
concentrated to give crude aldehyde 38 as a yellowish solid (40.7 g) which was taken to the next step without further purification.

Aldehyde 38: $R_{f}=0.60$ (silica, $50 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.72$ (s, $1 \mathrm{H}, \mathrm{CHO}$), 7.67-7.37 (band, 10 $\mathrm{H}, \mathrm{Ar}), 4.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.09(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu})$.

Conversion of 38 to 40 . To a solution of the crude aldehyde 38 (13.2 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL) was added (carbethoxyethylidene)triphenylphosphorane ($22.3 \mathrm{~g}, 62.0 \mathrm{mmol}$) in one portion. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ for 20 h , concentrated, and purified by flash chromatography (silica, $5-10 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to give $40\left(13.7 \mathrm{~g}, 91 \%\right.$ from 36) as an oil: $R_{f}=0.80$ (silica, $20 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.70-7.36$ (band, $10 \mathrm{H}, \mathrm{Ar}), 6.87(\mathrm{t}, J=5.6 \mathrm{~Hz}, \mathrm{CH}=), 4.36\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $4.20\left(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{COOCH}_{2}\right), 1.64(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 1.30(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{COOCH}_{2} \mathrm{CH}_{3}$), 1.05 (s, $9 \mathrm{H}, t \mathrm{Bu}$).

Ester 41. A solution of aldehyde 39 ($159 \mathrm{~g}, 1.10 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(600 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was treated with a solution of (carbethoxymethylene)triphenylphosphorane ($408 \mathrm{~g}, 1.13 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1200 \mathrm{~mL})$ over the period of 4 h . The solution was allowed to warm to $25^{\circ} \mathrm{C}$ and stirred for 18 h . The mixture was concentrated, suspended in 30% $\mathrm{Et}_{2} \mathrm{O}$ in hexanes, and filtered through a pad of silica gel to give 41 ($222 \mathrm{~g}, 90 \%$) as an oil: $R_{f}=0.40$ (silica, 30% EtOAc in hexanes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.78(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 4.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCHO})$, 4.37 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{A}$ of $\mathrm{AB}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 4.13 (band, $3 \mathrm{H},=\mathrm{CCH}_{2} \mathrm{O}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$), $3.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{B}\right.$ of $\left.\mathrm{AB}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{B}$ of $\mathrm{AB},=\mathrm{CCH}_{2} \mathrm{O}$), $1.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.76-1.47$ (band, $6 \mathrm{H}, \mathrm{CH}_{2}$), 1.23 , (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$).

Alcohol 42. A solution of ether $41(222 \mathrm{~g}, 0.97 \mathrm{~mol})$ in MeOH $(2500 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$ was treated with p-toluenesulfonic acid (1 g) and stirred at $25^{\circ} \mathrm{C}$ for 18 h . The mixture was treated with $\mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{~mL})$, concentrated, redissolved in EtOAc (1500 mL), washed with aqueous $\mathrm{NaHCO}_{3}(2 \times 100 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$, and brine $(2 \times 100 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated to give a clear oil that was purified by flash chromatography (silica, 40% ethyl acetate in hexanes) to give 42 ($128 \mathrm{~g}, 92 \%$) as a colorless oil: $R_{f}=0.20$ (silica, 30% EtOAc in hexanes); IR (thin film) $\boldsymbol{v}_{\text {max }} 3434,2983,2934,1713,1650$, 1446, 1368, 1261, 1132, 1031, 731; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $6.62(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 4.11\left(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}\right), 3.98(\mathrm{q}, J$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}\right), 1.09$ $\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right) \delta 167.5$, $140.6,127.5,60.4,58.8,13.7,12.0$; FAB HRMS (NBA/CsI) m/e $276.9841, \mathrm{M}+\mathrm{Cs}^{+}$calcd for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{3} 276.9846$.
Diol 55. A. Small-Scale Procedure. A mixture of dienophile 42 $(1.44 \mathrm{~g}, 10 \mathrm{mmol})$, diene $52(1.52 \mathrm{~g}, 13.6 \mathrm{mmol})$, and $\mathrm{PhB}(\mathrm{OH})_{2}(1.7$ $\mathrm{g}, 13.9 \mathrm{mmol}$) in benzene (30 mL) was stirred at reflux with azeotropic removal of water (Dean-Stark trap) for 48 h . After the solution was cooled to $25{ }^{\circ} \mathrm{C}$, the reaction was quenched with 2,2-dimethyl-1,3propanediol ($1.45 \mathrm{~g}, 13.9 \mathrm{mmol}$) and the resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h , concentrated, and purified by flash chromatography (silica, $10 \rightarrow 50 \%$ EtOAc in hexanes) to give dienophile 42 (0.33 g , 23%), diene 52 ($0.51 \mathrm{~g}, 34 \%$), and diol 55 ($1.56 \mathrm{~g}, 79 \%$ based on 77% conversion) as a yellow oil.
B. Large-Scale Procedure. A mixture of dienophile 42 (70.0 g , 0.49 mol), diene $52(54.4 \mathrm{~g}, 0.49 \mathrm{~mol})$, and $\mathrm{PhB}(\mathrm{OH})_{2}(56.3 \mathrm{~g}, 0.45$ $\mathrm{mol})$ in benzene $(1000 \mathrm{~mL})$ was stirred at reflux with azeotropic removal of water (Dean-Stark trap) for 144 h . After the solution was cooled to $25^{\circ} \mathrm{C}$, the reaction was quenched with 1,3 -propanediol (36.8 mL , 0.51 mol) and the resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 2.5 h , concentrated, and purified by flash chromatography (silica, $10 \rightarrow 50 \%$ EtOAc in hexanes) to give dienophile 42 and diene $52(64.7 \mathrm{~g}, 52 \%$, 1:1 mixture), plus diol 55 ($34.88 \mathrm{~g}, 58 \%$ based on 48% conversion) as a yellow oil: $R_{f}=0.13$ (silica, 50% EtOAc in hexanes); IR (thin film) $\nu_{\text {max }} 3423,2987,1766,1715,1257,1202,1021 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.06$ (dd, $J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$), 5.78 (b d, $J=$ $10.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.57$ (dd, $J=9.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.57-4.55$ (band, $1 \mathrm{H}, 7-\mathrm{H}$), $4.42(\mathrm{dd}, J=9.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.15(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $4.18-4.12$ (band, $1 \mathrm{H}, 4-\mathrm{OH}$), 3.07 (b t, J $=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.04(\mathrm{~b} \mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{OH}), 1.25(\mathrm{~s}, 3 \mathrm{H}$, $19-\mathrm{CH}_{3}$), $1.94\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$); ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.5,175.6,133.0,124.9,71.6,66.8,62.4,47.3,46.6,42.0$, 15.4, 13.8; FAB HRMS (NBA/NaI) m/e 279.0859, M + Na^{+}calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{6} 279.0845$.

Bis(silyl ether) 58. A solution of diol $\mathbf{5 5}$ ($28.5 \mathrm{~g}, 111 \mathrm{mmol}$), 2,6lutidine ($102 \mathrm{~mL}, 445 \mathrm{mmol}$), and 4 -(dimethylamino) pyridine (DMAP, $1.50 \mathrm{~g}, 12.2 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL})$ was treated with tertbutyldimethylsilyl trifluoromethanesulfonate (TBSOTf, $52.0 \mathrm{~mL}, 445$ mmol) and stirred at $0^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was added to aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 150 \mathrm{~mL})$, washed with aqueous $\mathrm{CuSO}_{4}(2 \times 100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by flash chromatography (silica, $5 \rightarrow 15 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to give 58 ($49.6 \mathrm{~g}, 92 \%$) as a white solid: $R_{f}=0.62$ (silica $15 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether); IR (thin film) $\nu_{\max } 2960,2936,2857$, $1746,1256 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 6.19$ (dd, $J=8.5,5.0$ $\mathrm{Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.10(\mathrm{dd}, J=8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.12(\mathrm{dd}, J=8.5$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.11(\mathrm{dd}, J=5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}), 3.83-3.70$ (band, $2 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}$), $2.83(\mathrm{~d}, J$ $=4.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 1.22\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 1.02\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 0.97\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\left(\mathrm{CH}_{3}\right)_{2}\right), 0.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 0.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\left(\mathrm{CH}_{3}\right)_{2}\right), 0.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{C}^{2}\left(\mathrm{CH}_{3}\right)_{3}\right)\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 0.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 174.0,133.5,132.4,119.0,80.0,70.9,62.8,60.6,53.0,45.9,26.0$, 25.9, 20.5, 18.4, 14.0; FAB HRMS (NBA/NaI) m/e 617.1731, M + Na^{+}calcd for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{Si}_{2}$ 617.1731.

Alcohol 59. A solution of ester $58(49.6 \mathrm{~g}, 102 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ $(500 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was treated with $\mathrm{LiAlH}_{4}(110 \mathrm{~mL}$ of a 1 M solution, 110 mmol), allowed to warm to $25^{\circ} \mathrm{C}$, and stirred at $25^{\circ} \mathrm{C}$ for 0.5 h . After the solution was cooled to $-78^{\circ} \mathrm{C}$, the reaction was quenched with EtOAc (25 mL) and aqueous $\mathrm{NH}_{4} \mathrm{Cl}(150 \mathrm{~mL})$. The reaction mixture was allowed to warm to $25^{\circ} \mathrm{C}$ and stirred for 1 h . The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 $\times 200 \mathrm{~mL}$). The combined organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by flash chromatography (silica, $20 \rightarrow 45 \%$ $\mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to give $59(43.9 \mathrm{~g}, 97 \%)$ as a white solid: R_{f} $=0.22$ (silica, $30 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether); IR (thin film) $v_{\max } 2955$, 2931, 2857, 1471, 1280, $1253 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 6.43 (dd, $J=8.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 6.20(\mathrm{dd}, J=8.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}$, $5-\mathrm{H}), 4.10(\mathrm{dd}, J=8.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 3.95(\mathrm{dd}, J=5.3,1.7 \mathrm{~Hz}$, $1 \mathrm{H}, 7-\mathrm{H}), 3.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 3.25$ (dd, $J=10.4,4.3 \mathrm{~Hz}$, $1 \mathrm{H}, 9-\mathrm{H}), 3.15(\mathrm{dd}, J=10.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 1.60(\mathrm{~b} \mathrm{t}, J=4.3 \mathrm{~Hz}$, $1 \mathrm{H}, 9-\mathrm{OH}), 1.47(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 1.22\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right)$, $0.92\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\left(\mathrm{CH}_{3}\right)_{2}\right), 0.86\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\left(\mathrm{CH}_{3}\right)_{2}\right)$, 0.17 (s, $\left.3 \mathrm{H}, \mathrm{Si}\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\left(\mathrm{CH}_{3}\right)_{2}\right), 0.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\left(\mathrm{CH}_{3}\right)_{2}\right)$, 0.12 (s, $\left.3 \mathrm{H}, \mathrm{Si}\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\left(\mathrm{CH}_{3}\right)_{2}\right), 0.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Si}\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\left(\mathrm{CH}_{3}\right)_{2}\right)$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 132.8,131.7,119.0,80.0,72.0,69.6$, 63.1, 46.0, 44.7, 26.0, 25.7, 18.9, 18.2, 18.0, -2.9, -3.0, -3.1, -3.2; FAB HRMS (NBA/CsI) $m / e 575.1636, \mathrm{M}+\mathrm{Cs}^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{O}_{5}-$ $\mathrm{Si}_{2} 575.1625$.

Diol 60. A solution of alcohol $59(43.9 \mathrm{~g}, 99 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (250 mL) and MeOH (20 mL) was treated with camphorsulfonic acid (CSA, $0.52 \mathrm{~g}, 5 \mathrm{mmol}$) and stirred at $25{ }^{\circ} \mathrm{C}$ for 1 h . After dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$, the reaction was quenched with aqueous $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 200 \mathrm{~mL})$. The combined organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated, and purified by flash chromatography (silica, $50 \% \mathrm{Et}_{2} \mathrm{O}$ in petroleum ether) to give diol 60 (32.6 $\mathrm{g}, 94 \%$) as white crystals: $\mathrm{mp} 109-111^{\circ} \mathrm{C}$, from EtOAc-hexanes; R_{f} $=0.38$ (silica, $\mathrm{Et}_{2} \mathrm{O}$); IR (thin film) $v_{\max } 3433,2932,2859,1766,1469$, 1384, 1081, 1023; ${ }^{l} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.99$ (ddd, $J=18.0$, $3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), 5.82 (dd, $J=18.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}$), 4.38 (A of $\mathrm{ABX}, \mathrm{dd}, J=9.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.33$ (B of ABX, ddd, $J=$ $9.5,5.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.24(\mathrm{~b} \mathrm{~s}, 1 \mathrm{H}, 7-\mathrm{H}), 3.57\left(\mathrm{~A}^{\prime}\right.$ of $\mathrm{A}^{\prime} \mathrm{B}^{\prime}, \mathrm{d}$ b, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}$), $3.39\left(\mathrm{~B}^{\prime}\right.$ of $\mathrm{A}^{\prime} \mathrm{B}^{\prime}, \mathrm{b} \mathrm{d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}$, $9-\mathrm{H}$), 2.70-2.33 (band, $2 \mathrm{H}, 9-\mathrm{OH}$ and $7-\mathrm{OH}$), $2.55(\mathrm{X}$ of $\mathrm{ABX}, \mathrm{dd}$, $7.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 0.88\left(\mathrm{~s}, 3 \mathrm{H}, 19-\mathrm{CH}_{3}\right), 0.83\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)-\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 0.16\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ δ 175.7, 135.1, 124.4, 74.5, 68.7, 67.7, 66.4, 47.5, 41.9, 25.6, 18.1, 12.9, -2.7, -3.1; FAB HRMS (NBA) m/e 329.1772, M + H^{+}calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{5} \mathrm{Si} 329.1784$.

Acknowledgment. We thank Drs. Dee H. Huang, Gary Siuzdak, and Raj Chadha for NMR, mass spectroscopic, and X-ray crystallographic assistance, respectively. This work was financially supported by NIH, The Scripps Research Institute, fellowships from Mitsubishi Kasei Corporation (H.U.), R.W. Johnson-ACS Division of Organic Chemistry (E.J.S.), The Office of Naval Research (R. K. G.), Glaxo, Inc. (C.F.C.), Mr Richard Staley (C.F.C.), Rhône-Poulenc Rorer (P.G.N.), and grants from Merck Sharp \& Dohme, Pfizer, Inc., Schering Plough, and the ALSAM Foundation.

Supplementary Material Available: Experimental techniques and data for compounds $10-14,16,18-35,47-51,57$, 58, 61-80, 82-87, and 89-107 (44 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS. See any current masthead page for ordering information.

JA942193U

[^0]: * Address correspondence to this author at the Scripps Research Institute or the University of California.
 ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, December 15, 1994. (1) Nicolaou, K. C.; Nantermet, P. G.; Ueno, H.; Guy, R. K.; Couladouros, E. A.; Sorensen, E. J. J. Am. Chem. Soc. 1995, 117, 624.
 (2) Carruthers, W. Cycloaddition Reactions in Organic Synthesis in Tetrahedron Organic Chemistry Series; Baldwin, J. E., FRS, Magnus, P. D., FRS, Eds.; Pergamon Press: New York: 1990; Vol. 8, p 1.
 (3) Kazi, M. A.; Khan, I. H.; Khan, M. H. J. Chem. Soc. 1964, 1511.
 (4) Alkonyi, I.; Szabo, D. Chem. Ber. 1967, 2773.
 (5) Shiner, C. S.; Fisher, A. M.; Yacobi, F. Tetrahedron Lett. 1983, 24, 5687.
 (6) See also: Madge, N. C.; Holmes, A. B. J. Chem. Soc., Chem. Commun. 1980, 956. Evans, D. A.; Scott, W. L.; Truesdale, L. K. Tetrahedron Lett. 1972, 121. Monti, S. A.; Chen, S. C.; Yang, Y. L.; Yuan, S. S.; Bourgeois, O. P. J. Org. Chem. 1978, 43, 4062.

[^1]: (9) McMurry, J. E.; Scott, W. J. Tetrahedron Lett. 1983, 24, 979. Wulff, W. D.; Peterson, G. A.; Bauta, W. E.; Chan, K.-S.; Faron, K. L.; Gilbertson, S. R.; Kaesler, R. W.; Yang, D. C.; Murray, C. K. J. Org. Chem. 1986, 51, 277.
 (10) (a) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 3636. (b) Milstein, D.; Stille, J. K. J. Org. Chem. 1979, 44, 1613. (c) For a review, see: Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508.

[^2]: (11) Cusack, N. J.; Reese, C. B.; Risius, A. C.; Roozpeikar, B. Tetrahedron 1976, 32, 2157.
 (12) Shapiro, R. H. Org. React. 1976, 23, 405. Chamberlin, A. R.; Bloom, S. H. Org. React. 1990, 39, 1-83. Martin, S. F.; Daniel, D.; Cherney, R. J.; Liras, S. J. Org. Chem. 1992, 57, 2523.
 (13) This strategy was later used by others to accomplish similar couplings: Di Grandi, M. J.; Jung, D. K.; Krol, W. J.; Danishefsky, S. J. J. Org. Chem. 1993, 58, 4989. Masters, J. J.; Jung, D. K.; Bornmann, W. G.; Danishefsky, S. J. Tetrahedron Lett. 1993, 34, 7253.
 (14) Nicolaou, K. C.; Yang, Z.; Sorensen, E.; Nakada, M. J. Chem. Soc., Chem. Commun. 1993, 1024.
 (15) Mundy, B. P.; Theodore, J. J. J. Am. Chem. Soc. 1980, 102, 2005.
 (16) Sharpless, K. B.; Michaelson, R. C. J. Am. Chem. Soc. 1973, 95, 6136. Sharpless, K. B.; Verhoeven, T. R. Aldrichimica Acta 1979, 12, 63. Rao, A. S. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Ley, S. V., FRS, Eds.; Pergamon Press: New York, 1991; Vol. 7, p 376.
 (17) Murai, S.; Murai, T.; Kato, S. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 8, p 871.
 (18) McMurry, J. E. Chem. Rev. 1989, 89, 1513. McMurry, J. E. Acc. Chem. Res. 1983, 16, 405. McMurry, J. E.; Lectka, T.; Rico, J. G. J. Org. Chem. 1989, 54, 3748. McMurry, J. E.; Rico, J. G. Tetrahedron Lett. 1989, 30, 1169; Lenoir, D. Synthesis 1989, 883.
 (19) Evans, M. E.; Parrish, F. W.; Long, L., Jr. Carbohydr. Res. 1967, 3, 453. Lipshutz, B. H.; Barton, J. C. J. Org. Chem. 1988, 53, 4495.
 (20) Griffith, W. P.; Ley, S. V. Aldrichimica Acta 1990, 23, 13.
 (21) Kende, A. S.; Johnson, S.; Sanfilippo, P.; Hodges, J. C.; Jungheim, L. N. J. Am. Chem. Soc. 1986, 108, 3513.

[^3]: (22) Fatiadi, A. J. Synthesis 1976, 65.
 (23) Parish, E. J.; Wei, T. Y. Synth. Commun. 1987, 17, 1227. Rathore, R.; Saxena, N.; Chadrasekaran Synth. Commun. 1986, 16, 1493.

[^4]: (24) Corey, D. J.; Watt, D. S. J. Am. Chem. Soc. 1973, 95, 2303.
 (25) Bryson, T. A.; Donelson, D. M. J. Org. Chem. 1977, 42, 2930.

[^5]: (26) Corey, E. J.; Kozikowski, A. P. Tetrahedron Lett. 1975, 2389.
 (27) Narasaka, K.; Shimada, S.; Osoka, K.; Iwasawa, N. Synthesis 1991, 1171.

[^6]: (28) For obvious practical reasons, large-scale reactions are performed with 1.0 equiv of diene and dienophile each and 0.95 equiv of $\mathrm{PhB}(\mathrm{OH})_{2}$; diol 55 is typically obtained in ca. 60% yield based on ca. 50% conversion The crude starting material mixture is recycled in the same process.
 (29) Corey, E. J.; Boger, D. L. Tetrahedron Lett. 1978, 2461.
 (30) Corey, E. J.; Cho, H.; Rücker, C.; Hua, D. H. Tetrahedron Lett. 1981, 22, 3455.

[^7]: (31) Evans, M. E.; Parrish, F. W.; Long, L., Jr. Carbohydr. Res. 1967, 3, 453. Lipshutz, B. H.; Barton, J. C. J. Org. Chem. 1988, 53, 4495.
 (32) Hanessian, S.; Lavallée, P. Can. J. Chem. 1975, 53, 2975. Hanessian, S.; Lavallée, P. Can. J. Chem. 1977, 55, 562.
 (33) Nicolaou, K. C.; Liu, J.-J.; Hwang, C.-K.; Dai, W.-M.; Guy, R. K. J. Chem. Soc., Chem. Commun. 1992, 1118.
 (34) Smith, K.; Pelter, A. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York, 1991; Vol. 8, p 703.

[^8]: (35) Albert, R.; Dax, K.; Pleschko, R.; Stutz, K. Carbohydr. Res. 1985, 137, 282. Yamanoi, T.; Akiyama, E.; Inazu, T. Chem. Lett. 1989, 335. Crimmins, M. T.; Hollis, W. G., Jr.; Lever, J. G. Tetrahedron Lett. 1987, 28, 3647.

[^9]: (36) Takano, S.; Akiyama, M.; Sato, S.; Ogasawara, K. Chem. Lett. 1983, 1593. Hatakeyama, S.; Sakurai, K.; Saijo, K.; Takano, S. Tetrahedron Lett. 1985, 26, 1333. Schreiber, S. L.; Wang, Z.; Schulte, G. Tetrahedron Lett. 1988, 29, 4085. Adam, G.; Seebach, D. Synthesis 1988, 373.
 (37) Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.
 (38) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155. Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277. Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899.

[^10]: (39) Wenkert, E.; Goodwin, T. E. Synth. Commun. 1977, 7, 409.
 (40) Höfle, G.; Steglich, W.; Vorbrüggen, H. Angew. Chem., Int. Ed. Engl. 1978, 17, 569.

[^11]: (41) Haworth, W. N.; Porter, C. R. J. Chem. Soc. 1930, 151.
 (42) Ellison, R. A.; Lukenbach, E. R.; Chiu, C.-W. Tetrahedron Lett. 1975, 499.

